Reduction of Climate Sensitivity to Solar Forcing due to Stratospheric Ozone Feedback
نویسندگان
چکیده
An accurate assessment of the role of solar variability is a key step toward a proper quantification of natural and anthropogenic climate change. To this end, climate models have been extensively used to quantify the solar contribution to climate variability. However, owing to the large computational cost, the bulk of modeling studies to date have been performed without interactive stratospheric photochemistry: the impact of this simplification on the modeled climate system response to solar forcing remains largely unknown. Here this impact is quantified by comparing the response of two model configurations, with and without interactive ozone chemistry. Using long integrations, robust surface temperature and precipitation responses to an idealized irradiance increase are obtained. Then, it is shown that the inclusion of interactive stratospheric chemistry significantly reduces the surface warming (by about one-third) and the accompanying precipitation response. This behavior is linked to photochemically induced stratospheric ozone changes, and their modulation of the surface solar radiation. The results herein suggest that neglecting stratospheric photochemistry leads to a sizable overestimate of the surface response to changes in solar irradiance. This has implications for simulations of the climate in the last millennium and geoengineering applications employing irradiance changes larger than those observed over the 11-yr sunspot cycle, wheremodels often use simplified treatments of stratospheric ozone that are inconsistent with the imposed solar forcing.
منابع مشابه
Reduction of climate sensitivity to solar forcing
An accurate assessment of the role of solar variability is a key step towards a proper quantification of natural and anthropogenic climate change. To this end, climate models have been extensively used to quantify the solar contribution to climate variability. However, owing to its large computational cost, the bulk of modeling studies to date have been performed without interactive stratospher...
متن کاملA large ozone-circulation feedback and its implications for global warming assessments
State-of-the-art climate models now include more climate processes which are simulated at higher spatial resolution than ever1. Nevertheless, some processes, such as atmospheric chemical feedbacks, are still computationally expensive and are often ignored in climate simulations1,2. Here we present evidence that how stratospheric ozone is represented in climate models can have a first order impa...
متن کاملInhomogeneous forcing and transient climate sensitivity
Understanding climate sensitivity is critical to projecting climate change in response to a given forcing scenario. Recent analyses1–3 have suggested that transient climate sensitivity is at the low end of the present model range taking into account the reduced warming rates during the past 10–15 years during which forcing has increased markedly4. In contrast, comparisons of modelled feedback p...
متن کاملStratospheric solar geoengineering without ozone loss.
Injecting sulfate aerosol into the stratosphere, the most frequently analyzed proposal for solar geoengineering, may reduce some climate risks, but it would also entail new risks, including ozone loss and heating of the lower tropical stratosphere, which, in turn, would increase water vapor concentration causing additional ozone loss and surface warming. We propose a method for stratospheric ae...
متن کاملClimate response to the increase in tropospheric ozone since preindustrial times:
The reliance on global mean radiative forcing as an index of climate change is questionable for highly inhomogeneous forcing agents such as tropospheric ozone or aerosols. Using a general circulation model, we have carried out a pair of equilibrium climate simulations with previously calculated present-day and preindustrial ozone distributions. We show that the radiative forcing of 0.49 W m-2 d...
متن کامل